/*
 * $RCSfile: Numerics.java,v $
 *
 * Copyright (c) 2007 Sun Microsystems, Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistribution of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 *
 * - Redistribution in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in
 *   the documentation and/or other materials provided with the
 *   distribution.
 *
 * Neither the name of Sun Microsystems, Inc. or the names of
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * This software is provided "AS IS," without a warranty of any
 * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
 * EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL
 * NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF
 * USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
 * DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
 * ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
 * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
 * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
 * INABILITY TO USE THIS SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * You acknowledge that this software is not designed, licensed or
 * intended for use in the design, construction, operation or
 * maintenance of any nuclear facility.
 *
 * $Revision: 1.1 $
 * $Date: 2009-09-14 14:49:41 $
 * $State: Exp $
 */

// ----------------------------------------------------------------------
//
// The reference to Fast Industrial Strength Triangulation (FIST) code
// in this release by Sun Microsystems is related to Sun's rewrite of
// an early version of FIST. FIST was originally created by Martin
// Held and Joseph Mitchell at Stony Brook University and is
// incorporated by Sun under an agreement with The Research Foundation
// of SUNY (RFSUNY). The current version of FIST is available for
// commercial use under a license agreement with RFSUNY on behalf of
// the authors and Stony Brook University.  Please contact the Office
// of Technology Licensing at Stony Brook, phone 631-632-9009, for
// licensing information.
//
// ----------------------------------------------------------------------

package org.j3d.geom.triangulation;

import javax.vecmath.*;

class Numerics {

    static double max3(double a, double b, double c)
    {
	return (((a) > (b)) ? (((a) > (c)) ? (a) : (c))
		: (((b) > (c)) ? (b) : (c)));
    }

    static double min3(double a, double b, double c)
    {
	return (((a) < (b)) ? (((a) < (c)) ? (a) : (c))
		: (((b) < (c)) ? (b) : (c)));
    }

    static boolean lt(double a, double eps)
    {
	return ((a) < -eps);
    }

    static boolean le(double a, double eps)
    {
	return (a <= eps);
    }

    static boolean ge(double a, double eps)
    {
	return (!((a) <= -eps));
    }

    static boolean eq(double a, double eps)
    {
	return (((a) <= eps) && !((a) < -eps));
    }

    static boolean gt(double a, double eps)
    {
	return !((a) <= eps);
    }

    static double baseLength(Tuple2f u, Tuple2f v) {
	double x, y;
	x = (v).x - (u).x;
	y = (v).y - (u).y;
	return Math.abs(x) + Math.abs(y);
    }

    static double sideLength(Tuple2f u, Tuple2f v) {
	double x, y;
	x = (v).x - (u).x;
	y = (v).y - (u).y;
	return x * x + y * y;
    }

    /**
     * This checks whether  i3,  which is collinear with  i1, i2,  is
     * between  i1, i2. note that we rely on the lexicographic sorting of the
     * points!
     */
    static boolean inBetween(int i1, int i2, int i3) {
	return ((i1 <= i3)  &&  (i3 <= i2));
    }

    static boolean strictlyInBetween(int i1, int i2, int i3) {
	return ((i1 < i3)  &&  (i3 < i2));
    }

    /**
     * this method computes the determinant  det(points[i],points[j],points[k])
     * in a consistent way.
     */
    static double stableDet2D(Triangulator triRef, int i, int j, int k) {
	double det;
	Point2f numericsHP, numericsHQ,  numericsHR;

	//      if((triRef.inPointsList(i)==false)||(triRef.inPointsList(j)==false)||
	// (triRef.inPointsList(k)==false))
	//  System.out.println("Numerics.stableDet2D Not inPointsList " + i + " " + j
	//		     + " " + k);

	if ((i == j)  ||  (i == k)  ||   (j == k)) {
	    det = 0.0;
	}
	else {
	    numericsHP = triRef.points[i];
	    numericsHQ = triRef.points[j];
	    numericsHR = triRef.points[k];

	    if (i < j) {
		if (j < k)            /* i < j < k  */
		    det =  Basic.det2D(numericsHP, numericsHQ, numericsHR);
		else if (i < k)       /* i < k < j  */
		    det = -Basic.det2D(numericsHP, numericsHR, numericsHQ);
		else                  /* k < i < j  */
		    det =  Basic.det2D(numericsHR, numericsHP, numericsHQ);
	    }
	    else {
		if (i < k)            /* j < i < k  */
		    det = -Basic.det2D(numericsHQ, numericsHP, numericsHR);
		else if (j < k)      /* j < k < i  */
		    det =  Basic.det2D(numericsHQ, numericsHR, numericsHP);
		else                  /* k < j < i */
		    det = -Basic.det2D(numericsHR, numericsHQ, numericsHP);
	    }
	}

	return det;
    }

    /**
     * Returns the orientation of the triangle.
     * @return +1 if the points  i, j, k are given in CCW order;
     * -1 if the points  i, j, k are given in CW order;
     * 0 if the points  i, j, k are collinear.
     */
    static int orientation(Triangulator triRef, int i, int j, int k) {
	int ori;
	double numericsHDet;
	numericsHDet = stableDet2D(triRef, i, j, k);
	// System.out.println("orientation : numericsHDet " + numericsHDet);
	if (lt(numericsHDet, triRef.epsilon))        ori = -1;
	else if (gt(numericsHDet, triRef.epsilon))   ori =  1;
	else                                 ori =  0;
	return ori;
    }

    /**
     * This method checks whether  l  is in the cone defined by  i, j  and  j, k
     */
    static boolean isInCone(Triangulator triRef, int i, int j, int k,
			    int l, boolean convex) {
	boolean flag;
	int numericsHOri1, numericsHOri2;

	//      if((triRef.inPointsList(i)==false)||(triRef.inPointsList(j)==false)||
	//	 (triRef.inPointsList(k)==false)||(triRef.inPointsList(l)==false))
	//	   System.out.println("Numerics.isInCone Not inPointsList " + i + " " + j
	//	      + " " + k + " " + l);

	flag = true;
	if (convex) {
	    if (i != j) {
		numericsHOri1 = orientation(triRef, i, j, l);
		// System.out.println("isInCone : i != j, numericsHOri1 = " + numericsHOri1);
		if (numericsHOri1 < 0)                    flag = false;
		else if (numericsHOri1 == 0) {
		    if (i < j) {
			if (!inBetween(i, j, l))              flag = false;
		    }
		    else {
			if (!inBetween(j, i, l))              flag = false;
		    }
		}
	    }
	    if ((j != k)  &&  (flag == true)) {
		numericsHOri2 =  orientation(triRef, j, k, l);
		// System.out.println("isInCone : ((j != k)  &&  (flag == true)), numericsHOri2 = " +
		// numericsHOri2);
		if (numericsHOri2 < 0)                    flag = false;
		else if (numericsHOri2 == 0) {
		    if (j < k) {
			if (!inBetween(j, k, l))              flag = false;
		    }
		    else {
			if (!inBetween(k, j, l))              flag = false;
		    }
		}
	    }
	}
	else {
	    numericsHOri1= orientation(triRef, i, j, l);
	    if (numericsHOri1 <= 0) {
		numericsHOri2 = orientation(triRef, j, k, l);
		if (numericsHOri2 < 0)                   flag = false;
	    }
	}
	return flag;
    }


    /**
     * Returns convex angle flag.
     * @return 0 ... if angle is 180 degrees <br>
     *         1 ... if angle between 0 and 180 degrees <br>
     *         2 ... if angle is 0 degrees <br>
     *        -1 ... if angle between 180 and 360 degrees <br>
     *        -2 ... if angle is 360 degrees <br>
     */
    static int isConvexAngle(Triangulator triRef, int i, int j, int k, int ind) {
	int angle;
	double numericsHDot;
	int numericsHOri1;
	Point2f numericsHP, numericsHQ;

	//      if((triRef.inPointsList(i)==false)||(triRef.inPointsList(j)==false)||
	//	 (triRef.inPointsList(k)==false))
	//	  System.out.println("Numerics.isConvexAngle: Not inPointsList " + i + " " + j
	//			     + " " + k);

	if (i == j) {
	    if (j == k) {
		// all three vertices are identical; we set the angle to 1 in
		// order to enable clipping of  j.
		return 1;
	    }
	    else {
		// two of the three vertices are identical; we set the angle to 1
		// in order to enable clipping of  j.
		return 1;
	    }
	}
	else if (j == k) {
	    // two vertices are identical. we could either determine the angle
	    // by means of yet another lengthy analysis, or simply set the
	    // angle to -1. using -1 means to err on the safe side, as all the
	    // incarnations of this vertex will be clipped right at the start
	    // of the ear-clipping algorithm. thus, eventually there will be no
	    // other duplicates at this vertex position, and the regular
	    // classification of angles will yield the correct answer for j.
	    return -1;
	}
	else {
	    numericsHOri1 = orientation(triRef, i, j, k);
	    // System.out.println("i " + i + " j " + j + " k " + k + " ind " + ind +
	    //		   ". In IsConvexAngle numericsHOri1 is " +
	    //		   numericsHOri1);
	    if (numericsHOri1 > 0) {
		angle =  1;
	    }
	    else if (numericsHOri1 < 0) {
		angle = -1;
	    }
	    else {
		// 0, 180, or 360 degrees.
		numericsHP = new Point2f();
		numericsHQ = new Point2f();
		Basic.vectorSub2D(triRef.points[i], triRef.points[j], numericsHP);
		Basic.vectorSub2D(triRef.points[k], triRef.points[j], numericsHQ);
		numericsHDot = Basic.dotProduct2D(numericsHP, numericsHQ);
		if (numericsHDot < 0.0) {
		    // 180 degrees.
		    angle = 0;
		}
		else {
		    // 0 or 360 degrees? this cannot be judged locally, and more
		    // work is needed.

		    angle = spikeAngle(triRef, i, j, k, ind);
		    // System.out.println("SpikeAngle return is "+ angle);
		}
	    }
	}
	return angle;
    }


    /**
     * This method checks whether point  i4  is inside of or on the boundary
     * of the triangle  i1, i2, i3.
     */
    static boolean pntInTriangle(Triangulator triRef, int i1, int i2, int i3, int i4) {
	boolean inside;
	int numericsHOri1;

	inside = false;
	numericsHOri1 = orientation(triRef, i2, i3, i4);
	if (numericsHOri1 >= 0) {
	    numericsHOri1 = orientation(triRef, i1, i2, i4);
	    if (numericsHOri1 >= 0) {
		numericsHOri1 = orientation(triRef, i3, i1, i4);
		if (numericsHOri1 >= 0)  inside = true;
	    }
	}
	return inside;
    }


    /**
     * This method checks whether point  i4  is inside of or on the boundary
     * of the triangle  i1, i2, i3. it also returns a classification if  i4  is
     * on the boundary of the triangle (except for the edge  i2, i3).
     */
    static boolean vtxInTriangle(Triangulator triRef, int i1, int i2, int i3,
				 int i4, int[] type) {
	boolean inside;
	int numericsHOri1;

	inside = false;
	numericsHOri1 =  orientation(triRef, i2, i3, i4);
	if (numericsHOri1 >= 0) {
	    numericsHOri1 =  orientation(triRef, i1, i2, i4);
	    if (numericsHOri1 > 0) {
		numericsHOri1 =  orientation(triRef, i3, i1, i4);
		if (numericsHOri1 > 0) {
		    inside = true;
		    type[0] = 0;
		}
		else if (numericsHOri1 == 0) {
		    inside = true;
		    type[0]  = 1;
		}
	    }
	    else if (numericsHOri1 == 0) {
		numericsHOri1 =  orientation(triRef, i3, i1, i4);
		if (numericsHOri1 > 0) {
		    inside = true;
		    type[0] = 2;
		}
		else if (numericsHOri1 == 0) {
		    inside = true;
		    type[0]  = 3;
		}
	    }
	}
	return inside;
    }


    /**
     * Checks whether the line segments  i1, i2  and  i3, i4  intersect. no
     * intersection is reported if they intersect at a common vertex.
     * the function assumes that  i1 <= i2  and  i3 <= i4. if  i3  or  i4  lies
     * on  i1, i2  then an intersection is reported, but no intersection is
     * reported if  i1  or  i2  lies on  i3, i4. this function is not symmetric!
     */
    static boolean segIntersect(Triangulator triRef, int i1, int i2, int i3,
				int i4, int i5) {
	int ori1, ori2, ori3, ori4;

	//      if((triRef.inPointsList(i1)==false)||(triRef.inPointsList(i2)==false)||
	//	 (triRef.inPointsList(i3)==false)||(triRef.inPointsList(i4)==false))
	//	System.out.println("Numerics.segIntersect Not inPointsList " + i1 + " " + i2
	//			   + " " + i3 + " " + i4);
	//
	//      if((i1 > i2) || (i3 > i4))
	//	System.out.println("Numerics.segIntersect i1>i2 or i3>i4 " + i1 + " " + i2
	//      		   + " " + i3 + " " + i4);

	if ((i1 == i2)  ||  (i3 == i4))              return  false;
	if ((i1 == i3)  &&  (i2 == i4))              return  true;

	if ((i3 == i5)  ||  (i4 == i5))              ++(triRef.identCntr);

	ori3 = orientation(triRef, i1, i2, i3);
	ori4 = orientation(triRef, i1, i2, i4);
	if (((ori3 ==  1)  &&  (ori4 ==  1))  ||
	    ((ori3 == -1)  &&  (ori4 == -1)))        return  false;

	if (ori3 == 0) {
	    if (strictlyInBetween(i1, i2, i3))        return  true;
	    if (ori4 == 0) {
		if (strictlyInBetween(i1, i2, i4))     return  true;
	    }
	    else                                      return  false;
	}
	else if (ori4 == 0) {
	    if (strictlyInBetween(i1, i2, i4))        return  true;
	    else                                      return  false;
	}

	ori1 = orientation(triRef, i3, i4, i1);
	ori2 = orientation(triRef, i3, i4, i2);
	if (((ori1 <= 0)  &&  (ori2 <= 0))  ||
	    ((ori1 >= 0)  &&  (ori2 >= 0)))          return  false;

	return  true;
    }


    /**
     * this function computes a quality measure of a triangle  i, j, k.
     * it returns the ratio  `base / height', where   base  is the length of the
     * longest side of the triangle, and   height  is the normal distance
     * between the vertex opposite of the base side and the base side. (as
     * usual, we again use the l1-norm for distances.)
     */
    static double getRatio(Triangulator triRef, int i, int j, int k) {
	double area, a, b, c, base, ratio;
	Point2f p, q, r;

	//      if((triRef.inPointsList(i)==false)||(triRef.inPointsList(j)==false)||
	//	 (triRef.inPointsList(k)==false))
	//	System.out.println("Numerics.getRatio: Not inPointsList " + i + " " + j
	//			   + " " + k);

	p = triRef.points[i];
	q = triRef.points[j];
	r = triRef.points[k];


	a = baseLength(p, q);
	b = baseLength(p, r);
	c = baseLength(r, q);
	base = max3(a, b, c);

	if ((10.0 * a) < Math.min(b, c))     return 0.1;

	area = stableDet2D(triRef, i, j, k);
	if (lt(area, triRef.epsilon)) {
	    area = -area;
	}
	else if (!gt(area, triRef.epsilon)) {
	    if (base > a)                return 0.1;
	    else                         return Double.MAX_VALUE;
	}

	ratio = base * base / area;

	if (ratio < 10.0)               return ratio;
	else {
	    if (a < base)                return 0.1;
	    else                         return ratio;
	}
    }


    static int spikeAngle(Triangulator triRef, int i, int j, int k, int ind) {
	int ind1, ind2, ind3;
	int i1, i2, i3;

	//      if((triRef.inPointsList(i)==false)||(triRef.inPointsList(j)==false)||
	//	 (triRef.inPointsList(k)==false))
	//	System.out.println("Numerics.spikeAngle: Not inPointsList " + i + " " + j
	//			   + " " + k);

	ind2 = ind;
	i2 = triRef.fetchData(ind2);

	//      if(i2 != j)
	//	System.out.println("Numerics.spikeAngle: i2 != j " + i2 + " " + j );

	ind1 = triRef.fetchPrevData(ind2);
	i1 = triRef.fetchData(ind1);

	//      if(i1 != i)
	//	System.out.println("Numerics.spikeAngle: i1 != i " + i1 + " " + i );

	ind3 = triRef.fetchNextData(ind2);
	i3 = triRef.fetchData(ind3);

	//      if(i3 != k)
	//	System.out.println("Numerics.spikeAngle: i3 != k " + i3 + " " + k );

	return recSpikeAngle(triRef, i, j, k, ind1, ind3);
    }



    static int recSpikeAngle(Triangulator triRef, int i1, int i2, int i3,
			     int ind1, int ind3) {
	int ori, ori1, ori2, i0, ii1, ii2;
	Point2f pq, pr;
	double dot;

	if (ind1 == ind3) {
	    // all points are collinear???  well, then it does not really matter
	    // which angle is returned. perhaps, -2 is the best bet as my code
	    // likely regards this contour as a hole.
	    return -2;
	}

	if (i1 != i3) {
	    if (i1 < i2) {
		ii1 = i1;
		ii2 = i2;
	    }
	    else {
		ii1 = i2;
		ii2 = i1;
	    }
	    if (inBetween(ii1, ii2, i3)) {
		i2   = i3;
		ind3 = triRef.fetchNextData(ind3);
		i3 = triRef.fetchData(ind3);

		if (ind1 == ind3)  return 2;
		ori = orientation(triRef, i1, i2, i3);
		if (ori > 0)       return  2;
		else if (ori < 0)  return -2;
		else return recSpikeAngle(triRef, i1, i2, i3, ind1, ind3);
	    }
	    else {
		i2   = i1;
		ind1 = triRef.fetchPrevData(ind1);
		i1 = triRef.fetchData(ind1);
		if (ind1 == ind3)  return 2;
		ori = orientation(triRef, i1, i2, i3);
		if (ori > 0)       return  2;
		else if (ori < 0)  return -2;
		else return recSpikeAngle(triRef, i1, i2, i3, ind1, ind3);
	    }
	}
	else {
	    i0   = i2;
	    i2   = i1;
	    ind1 = triRef.fetchPrevData(ind1);
	    i1 = triRef.fetchData(ind1);

	    if (ind1 == ind3)  return 2;
	    ind3 = triRef.fetchNextData(ind3);
	    i3 = triRef.fetchData(ind3);
	    if (ind1 == ind3)  return 2;
	    ori = orientation(triRef, i1, i2, i3);
	    if (ori > 0) {
		ori1 = orientation(triRef, i1, i2, i0);
		if (ori1 > 0) {
		    ori2 = orientation(triRef, i2, i3, i0);
		    if (ori2 > 0) return -2;
		}
		return 2;
	    }
	    else if (ori < 0)  {
		ori1 = orientation(triRef, i2, i1, i0);
		if (ori1 > 0) {
		    ori2 = orientation(triRef, i3, i2, i0);
		    if (ori2 > 0) return 2;
		}
		return -2;
	    }
	    else {
		pq = new Point2f();
		Basic.vectorSub2D(triRef.points[i1], triRef.points[i2], pq);
		pr = new Point2f();
		Basic.vectorSub2D(triRef.points[i3], triRef.points[i2], pr);
		dot = Basic.dotProduct2D(pq, pr);
		if (dot < 0.0)  {
		    ori = orientation(triRef, i2, i1, i0);
		    if (ori > 0)  return  2;
		    else          return -2;
		}
		else {
		    return recSpikeAngle(triRef, i1, i2, i3, ind1, ind3);
		}
	    }
	}
    }


    /**
     * computes the signed angle between  p, p1  and  p, p2.
     *
     * warning: this function does not handle a 180-degree angle correctly!
     *          (this is no issue in our application, as we will always compute
     *           the angle centered at the mid-point of a valid diagonal.)
     */
    static double angle(Triangulator triRef, Point2f  p, Point2f p1, Point2f p2) {
	int sign;
	double angle1, angle2, angle;
	Point2f v1, v2;

	sign = Basic.signEps(Basic.det2D(p2, p, p1), triRef.epsilon);

	if (sign == 0)  return 0.0;

	v1 = new Point2f();
	v2 = new Point2f();
	Basic.vectorSub2D(p1, p, v1);
	Basic.vectorSub2D(p2, p, v2);

	angle1 = Math.atan2(v1.y, v1.x);
	angle2 = Math.atan2(v2.y, v2.x);

	if (angle1 < 0.0)     angle1 += 2.0*Math.PI;
	if (angle2 < 0.0)     angle2 += 2.0*Math.PI;

	angle = angle1 - angle2;
	if (angle > Math.PI)       angle  = 2.0*Math.PI - angle;
	else if (angle < -Math.PI) angle  = 2.0*Math.PI + angle;

	if (sign == 1) {
	    if (angle < 0.0)   return  -angle;
	    else               return   angle;
	}
	else {
	    if (angle > 0.0)   return  -angle;
	    else               return   angle;
	}
    }

}
